

Physics of Particle Detectors

Mandy Rominsky **Undergraduate Lecture Series** 08 June 2017

The official schedule is maintained at:

http://ed.fnal.gov/interns/lectures/

The pictures Elliott takes will be posted on Facebook:

https://www.facebook.com/fermilabsist/

Outline

- What are we interested in seeing?
 - Strong interactions
 - Weak
 - EM
 - What particles do we see
- How do we detect these?
 - Mostly just put something in path of a particle, see what it does
 - Some slow down, some just let it pass through
 - Physics principles
 - Detector technologies
- Full experiment
- Further reading

What do we know about?

- **Full Intro Lecture on 6/13**
- Standard Model
 - Matter is made of quarks and leptons
 - Interactions are mediated by gauge bosons
- For detectors we care about:
 - Strong Interactions
 - EM Interactions
- Most commonly detected: e^{+/-}, mu^{+/-}, pi^{+/-}, protons, neutrons, gamma, K0, K^{+/-}

What theory tells us

 Theory tells us that an electron and a positron interact via a Z boson and produce a quark-anitquark pair

$$e^+ + e^- \rightarrow Z^0 \rightarrow q\overline{q}$$

(+hadronization)

- Experimentally: we can send a beam of positrons and electrons towards each other and detect the end products
 - We must understand what our detectors are telling us in order to make sense of the theory
 - Properties: charge, mass, momentum, energy, etc

Particle Interactions

Electromagnetic interactions

- Ionization
- Cherenkov radiation
- Transition radiation Cherenkov/TRD
- Bremsstrahlung
- Pair production
- Strong interactions
 - Hadronic showers

季Fermilab

Calorimeters

Tracking Detectors

- Used for:
 - momentum measurements, charge determination
 - particle production position (primary and secondary)
- What are trackers made out of?
 - Gaseous detectors (Drift chambers, straws)
 - Solid state (silicon detectors)
 - Scintillating (fiber trackers)
- What are the important concepts?
 - Energy loss
 - Resolution
 - Being in a magnetic field

Gaseous Trackers

 Straws, Proportional Chambers, Drift chambers, GEMS, TPCs, etc

Operate with high voltage, cathode/anode geometry, charge

multiplication

Solid State Detectors and Fibers

- Vertex detectors, microstrips, pixel detectors, fibers
 - Radiation hard (very important!)
- Silicon detectors have many nice features
 - Commerically produced
 - Can make fine granularity

CMS 9.6M ch

Bethe-Bloch Equation – Energy loss for "heavy particles"

- Relativistic Formula: Bethe (1932), others added more corrections later
- Gives "stopping power" (energy loss = dE/dx) for charged particles passing through material:

$$-\frac{dE}{dx} = Kz^{2} \frac{Z}{A} \frac{1}{\beta^{2}} \left[\frac{1}{2} \ln \frac{2m_{e}c^{2}\beta^{2}\gamma^{2}T_{max}}{I^{2}} - \beta^{2} - \frac{\delta(\beta\gamma)}{2} \right]$$

where

A. Z: atomic mass and atomic number of absorber

z: charge of incident particle

 β, γ : relativistic velocity, relativistic factor of incident particle

 $\delta(\beta\gamma)$: density correction due to relativistic compression of absorber

I: ionization potential

 T_{max} : maximum energy loss in a single collision;

dE/dx has units of MeV cm²/g

x is ρS , where ρ is the material density, S is the pathlength

Note that this is NOT for electrons, that requires more math

Minimum Ionizing Particles

- Bethe-Bloch has same shape regardless of material
- The minimum is about the same regardless of material: occurs around p/Mc = 3-3.5
- dE/dx can be used to identify particle type along with an energy or momentum measurement

Resolution – How good is your tracker?

$$- p_{\rm T} ({\rm Gev/c}) = 0.3 B R$$

– How well can we measure R?

$$s = R\left(1 - \cos\frac{\theta}{2}\right) \approx R\left(1 - \left(1 - \frac{\theta^2}{8}\right)\right) = R\frac{\theta^2}{8} \approx \frac{0.3BL^2}{8p_T}$$

- Depends on a variety of things, including the magnetic field
 - $\frac{\sigma(p_T)}{p_T}\bigg|^{meas.} = \frac{\sigma_s}{s} = \frac{\sigma_x}{s} \sqrt{3/2} = \frac{\sigma_x \cdot p_T}{0.3 \cdot RI^2} \sqrt{96}$ – For three hits in a tracker:
 - Note this equation improves with length squared and improves with magnetic field. It degrades with position resolution and the momentum
 - A rough estimate of how well we can measure resolution: $\sigma(p_T)$

Tracking Summary

- Three types of tracking detectors: gaseous, solid state, scintillating
- Gaseous detectors rely on charge multiplication
 - Gas choice is a bit of "magic"
 - Covers large areas "cheaply" with sensitive materials
- Solid state/scintillating
 - Fine granularity, commercially produced
 - Can have problems with too much material in the beamline

Calorimeters

- Used for energy and mass measurements
 - Destructive (mostly) measurements
 - Point is to force particles to lose energy
- Comes in 2 flavors
 - Electromagnetic
 - Hadronic
- Either sampling or homogeneous
 - Many different material choices

EM Calorimetry

- EM calorimeters measure response from coulomb interactions (EM force)
 - Used to determine photons and electrons
 - Hadronic showers also have an EM component

JV217.c

Figure 5: Schematic development of an electromagnetic shower.

EMCal: Definitions of Important parameters

- Radiation length: When a particle's energy is reduced to 1/e.
 This is how we describe the thickness of an EMCal:
 - $X_0 = 180 (A/Z^2) (g/cm^2)$
- Critical energy: When the loss of energy from Bremsstrahlung equals the ionization loss of Energy: $E_c = 800/(Z + 1.2)$ (MeV)
- Moliere radius: Contains 90% of the shower and characterizes the width of the shower

$$- r = 21.2 \text{ (MeV) } X_0/E_c$$

Max shower: S_{max} = In(E_{incoming}/E_c)

7/3/17

Hadronic Calorimetry

- Hadronic calorimeters
 - Contain both an EM component driven by EM interactions and a hadronic component driven by Strong interactions

Figure 12: Schematic of development of hadronic showers.

HCal: Definitions of Parameters

- Defined by nuclear interaction lengths instead of radiation lengths
 - Lambda = A / (cross section)*Number of atoms
- Much more complicated, no easy formulas to use to define various concepts (shower max, etc)
- Several orders of magnitude bigger than EM interactions
 - Might need 25 cm to contain an EM shower, but need 2.5 meters to contain Hadronic shower

Cherenkov Detectors

In some materials, particles will travel faster than the speed

of light

"Sonic boom" or a boat in the water

- Main parameter: Cherenkov angle
 - Cos(theta) = 1/(n*beta)

Dependent of velocity of particle and the index of refraction for the

material

7/3/17

Cherenkov and Transition Radiation detectors

- Both used for Time of Flight and particle identification
 - Depending on mass and speed of particle, it will arrive in different places
- Important piece of the whole detector

7/3/17

Putting it all together

 In order to fully understand an interaction, we should use multiple detectors. There are 2 classic geometries: fixed target and collider.

Fixed Target Geometry

Collider Geometry

What do events look like?

We can use the different detectors to figure out the signals

More information on what they look like

Signature	Detector Type	Particle
Jet of hadrons	Calorimeter	u, c, t→Wb, d, s, b, g
'Missing' energy	Calorimeter	$ u_{e'} \ \nu_{\mu'} \ \nu_{\tau}$
Electromagnetic shower, X _o	EM Calorimeter	e, γ, W→ev
Purely ionization interactions, dE/dx	Muon Absorber	μ , $\tau \rightarrow \mu \nu \nu$
Decays,cτ≥100μm	Si tracking	C, b, τ Φ Fermilab

7/3/17

Summary

- The physics of particle detectors comes down to matter interacting with matter
 - Could spend a lifetime studying these different effects
- What I want you to remember:
 - Charged particle interactions are our main source of information
 - Use energy loss to determine what type of particles you are dealing with
- Things not touched on at all
 - Readout electronics: extremely important!!!
 - Services: HV and gases, etc: also extremely important!!!
- This is an active field

References

- Interesting Lecture notes:
 - physics.ucdavis.edu/Classes/Physics252b/Lectures/252b_lectur e3.ppt
 - http://www.desy.de/~garutti/LECTURES/ParticleDetectorSS12/L ectures SS2012.htm
- Books
 - Dan Green's "Physics of Particle Detectors"
 - Any of the CERN Yellow books on detectors (particularly anything by Sauli) http://cds.cern.ch/collection/CERN%20Yellow%20Reports?ln=e